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Section 1.0  Background and Purpose

1 Industrial and commercial/institutional boilers include process heaters that meet the RCRA definition of a
boiler.

2 EPA also committed to (1) publish an interim rule with revised emission standards, and (2) finalize several
compliance and implementation amendments to the Phase I rule.  These interim standards and compliance and
implementation amendments were promulgated on February 13 and 14, 2002 (67 FR 6792 and 67 FR 6968).
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1.0 Background and Purpose
1.1 Background

The U.S. Environmental Protection Agency (EPA) is developing maximum achievable
control technology (MACT) standards for hazardous waste combustors (HWCs).  Phase I of the
HWC MACT rulemaking was promulgated on September 30, 1999, for three categories of
HWCs:  incinerators, cement kilns and lightweight aggregate kilns (64 FR 52828).  These
standards were promulgated under the joint authority of the Clean Air Act (CAA) and the
Resource Conservation and Recovery Act (RCRA).  As part of the Phase I rulemaking, EPA
conducted an extensive assessment of risks to human health and the environment from hazardous
air pollutants (HAPs) emitted by Phase I sources.

In Phase II of the HWC MACT rulemaking, EPA plans to develop standards for
industrial and commercial/institutional boilers (which encompass both liquid and solid fuel
boilers) and hydrochloric acid production furnaces.1  The technology-based MACT standards
developed under Phase II are intended to supersede the emission standards for these sources
established pursuant to RCRA and codified at 40 CFR Part 266, Subpart H.  However,
Section 3004(a) and 3004(q) of RCRA require EPA to develop standards that are protective of
human health and the environment.  For this reason, EPA is conducting a comparative analysis
of the risks from hazardous-waste-burning boilers and industrial furnaces (as compared to risks
from incinerators from Phase I) as part of the Phase II rulemaking.

On July 24, 2001, the United States Court of Appeals for the District of Columbia Circuit
(the Court) granted the Sierra Club’s petition for review and vacated portions of the Phase I rule
(Cement Kiln Recycling Coalition v. EPA, Docket No. 99-1457a, July 24, 2001).

On October 19, 2001, EPA and the petitioners that challenged the Phase I emission
standards filed a joint motion asking the Court to stay the issuance of its mandate for four
months to allow EPA time to develop interim standards (a request that was subsequently granted
by the Court).  In the joint motion, EPA agreed to take several actions.  For instance, EPA agreed
to issue final replacement standards that fully comply with the Court’s mandate by June 14,
2005.2  Importantly, EPA also agreed to issue standards for Phase II sources concurrently with
the Phase I replacement rule.
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Table 1-1 gives the emission standard levels for the currently proposed MACT standards
for HWCs.  EPA considered a number of options in the development of the proposed standards. 
The  emissions that are projected to occur under each of those options were the subject of this
study.

Table 1-1.  Proposed Standards for Existing Sources

Incinerators Cement Kilns

Lightweight
Aggregate

Kilns
Solid Fuel-

Fired Boilersa
Liquid Fuel-

Fired Boilersa 

Hydrochloric
Acid

Production
Furnacesa

Dioxin/
Furans         
(ng
TEQ/dscm)

0.28 for dry
APCD and
WHB sources;f

0.40 for others

0.20 or 0.40 +
400°F at APCD
inlet

0.40 CO or THC
standard as a
surrogate

0.40 for dry
APCD sources;
CO or THC
standard as
surrogate for
others

0.40

Mercury 130 ug/dscm 64 ug/dscmb 67 ug/dscmb 10 ug/dscm 3.7E-6
lb/MMBtub,e

Total chlorine
standard as
surrogate

Particulate
Matter 

0.015 gr/dscf h 0.028 gr/dscf 0.025 gr/dscf 0.030 gr/dscf h 0.032 gr/dscf h Total chlorine
standard as
surrogate

Semivolatile
Metals 
(lead +
cadmium)

59 ug/dscm 4.0E-4
lbs/MMBtue

3.1E-4
lb/MMBtue and
250 ug/dscmc

170 ug/dscm 1.1E-5
lb/MMBtub,e

Total chlorine
standard as
surrogate

Low
Volatile
Metals 
(arsenic +
beryllium +
chromium)

84 ug/dscm 1.4E-5
lbs/MMBtue

9.5E-5
lb/MMBtue and
110 ug/dscmc

210 ug/dscm 1.1E-4
lbMMBtud,e

Total chlorine
standard as
surrogate

Total
Chlorine
(hydrogen
chloride +
chlorine
gas)

1.5 ppmvg 110 ppmvg 600 ppmvg 440 ppmvg 2.5E-2
lb/MMBtue, g

14 ppmv or
99.9927%
system removal
efficiency

a Particulate matter, semivolatile metal, low volatile, and total chlorine standards apply to major sources only for
solid fuel-fired boilers, liquid fuel-fired boilers, and hydrochloric acid production furnaces.

b Standard is based on normal emissions data.
c Sources must comply with both the thermal emissions and emission concentration standards.
d Low volatile metal standard for liquid fuel-fired boilers is for chromium only.  Arsenic and beryllium are not

included in the low volatile metal total for liquid fuel-fired boilers.
e Standards are expressed as mass of pollutant contributed by hazardous waste per million Btu contributed by the

hazardous waste.
f APCD denotes “air pollution control device,” WHB denotes “waste heat boiler.”
g Sources may elect to comply with site-specific, risk-based emission limits for hydrogen chloride and chlorine

gas.  
h Sources may elect to comply with an alternative to the particulate matter standard.
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1.2 Purpose and Scope

The overall purpose of this study was to provide risk analysis support for the Phase I
replacement (hereafter referred to as “New Phase I”) and Phase II HWC MACT rulemaking. 
Specifically, the objective was to develop as necessary and compare risk-affecting variables
(emissions, stack characteristics, meteorological data, and population data) from Phase I sources
for which human health risk estimates are available (hereafter referred to as “Old Phase I”) to
these same variables from the New Phase I/Phase II sources to determine the extent to which the
replacement/new sources might be judged similar to the Old Phase I sources.  If the Old Phase I
risk assessment determined that risks were acceptable for a certain chemical for a certain Phase I
source category (e.g., commercial incinerators), and the New Phase I/Phase II risk-affecting
variables for a specific category (e.g., Phase II liquid boilers) were found to be similar to the Old
Phase I variables, then, all other things being equal, one could reasonably infer that the
(unknown) human health risks from the New Phase I or Phase II source category for this
chemical would not be expected to differ significantly from the Old Phase I risks.

There are many differences between an Old Phase I and New Phase I or Phase II source
category that may affect relative risks between the two.  Emission rates, stack characteristics,
meteorological variables, population differences (number and spatial distribution), population
makeup, local environmental conditions, and land use are all important factors that may affect
risks.  To the extent that any of these factors differ between the source categories being
compared, the risks may be different.  Because it is impossible as a practical matter to
thoroughly compare all these factors, those factors believed to be most important and for which
data were either available or could be developed within the resource constraints of this study
were selected for comparison.  The factors for which data were readily available were chemical-
specific emission rates, stack characteristics, and some meteorological variables.  These
available data were then augmented by collecting additional meteorological data and collecting
and statistically analyzing site population data.  Thus, emission rates, stack characteristics,
meteorological variables, and population characteristics are the four overall characteristics that
were believed to most significantly affect risks.  Any remaining risk-affecting factors (e.g.,
topography, soil characteristics, surface water characteristics, land use) were not compared, and
subsequent relative risk inferences should be understood to implicitly assume that there are no
significant differences among these factors between Old Phase I combustor sites and New
Phase I/Phase II sites or that these factors are relatively insignificant contributors to risks.  This
should be recognized as a significant limitation, particularly for categories of  New Phase I/
Phase II sources having a small number of sites where unaccounted for site-specific factors could
be important contributors to risks.

The Old Phase I risk assessment provides the risk benchmarks from which relative risk
inferences are made based on the results of the comparative analyses performed in this study. 
The following overview is excerpted from the Old Phase I risk assessment technical background
document prepared by Research Triangle Institute (RTI, 1999).

1.3 Old Phase I Risk Assessment

On April 19, 1996, EPA proposed rules to revise standards for hazardous waste
combustors, which include hazardous-waste-burning incinerators, cement kilns, and lightweight
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3 It should be noted that silver, cobalt, copper, and manganese were not included in the present study due to
limited data on emissions and/or low toxicity.

4 Individual risks for receptors that could not be enumerated, such as persons engaged in subsistence
farming or subsistence fishing, were also characterized.  This was done through the use of cumulative distributions
that were constructed from sector-level individual risk estimates, which were equally weighted with respect to the
numbers of individuals.

1-4

aggregate kilns.  The rule was proposed under joint authority of the CAA, as amended, and
RCRA, as amended.  HWCs emit HAPs that are listed under Section 112(d) of the CAA.  EPA
proposed national emission standards for hazardous air pollutants (NESHAP) pursuant to
Section 112(d) of the CAA that establish emission standards based on application of maximum
achievable control technology.  Hence, these standards are referred to as MACT standards.

These MACT standards are technology-based standards; they are not risk-based.  These
facilities, however, are also covered by RCRA Sections 3004(a) and 3004(q), which require EPA
to develop standards that are protective of human health and the environment.  To meet the
current MACT requirements under the CAA and to satisfy RCRA’s requirement, the Phase I
[Old Phase I] risk analysis was conducted to support the MACT standard rulemaking for HWCs. 
EPA’s express intent was to minimize duplication in regulations and regulatory actions. 
Accordingly, the MACT standards for incinerators, cement kilns, and lightweight aggregate kilns
were developed under CAA authority.  Consideration of human health and ecological risk
allowed EPA to satisfy the requirements of both RCRA and the CAA.  

The risk assessment conducted for the final rule covered the same source categories
evaluated in the April 19, 1996, proposed rules: incinerators, cement kilns, and lightweight
aggregate kilns.  For the risk assessment for the final rule (since vacated), three subcategories
were added for incinerators: commercial incinerators, onsite incinerators (small), and onsite
incinerators (large).  Waste heat boilers, which are associated with some incinerators, were
evaluated separately. 

The [old] Phase I risk assessment was a multimedia, multipathway assessment that
addressed direct exposures to constituents released to the atmosphere by HWC units and indirect
exposures due to movement of constituents into the food chain.  The risk assessment addressed
both human health risks (cancer effects and noncancer effects) as well as ecotoxicological risks. 
Constituents assessed were 7 congeners of chlorinated dioxin and 10 congeners of chlorinated
furan, 3 species of mercury, the 11 metals that were modeled for the proposed rule (antimony,
chromium VI, chromium III, arsenic, lead, barium, nickel, beryllium, selenium, cadmium, silver,
and thallium), 3 additional metals (cobalt, copper, and manganese), particulate matter (PM),
hydrochloric acid, and chlorine gas.3  

Individual risk for receptors that could be enumerated using U.S. Census and Census of
Agriculture data (for most types of cancer and noncancer effects) was characterized through the
use of cumulative risk distributions, which were constructed by weighting sector-level individual
risk estimates by the number of individuals located in that sector and then pooling those
weighted risk estimates.4  These pooled risk estimates were then ranked according to risk
magnitude, and specific percentiles of interest were identified.  These percentiles can be
interpreted as representing the risk level experienced by the individual located at that point on
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5 The 1999 risk assessment did not include solid or liquid fuel-fired boilers or hydrochloric acid production
furnaces burning hazardous waste, since these sources were not within the scope of the rule.

6 For facilities where stack gas measurements were not available, data were imputed by random selection
from a pool of measurements for similar units.

7 This reflects the reality that facilities cannot emit continuously at the level of the MACT standard and
simultaneously be in compliance with the standard at all times, due to variability in facility emissions.  This
approach is consistent with the assumption made in the cost and economic analysis for the rule that facilities emitting
below the design level would not need to retrofit with new control technologies.

1-5

the risk distribution (i.e., central tendency or high-end risk estimates can be identified).  These
cumulative risk distributions included a number of factors designed to make them representative
of the receptors for which they were developed:

# They reflected the location and density of receptors across study areas.  Study
areas encompassed the area surrounding a facility out to a radius of 20 kilometers.

# They were based on central tendency exposure parameters (key exposure
pathways were subject to exposure parameter variability analyses designed to
incorporate this additional source of variability into the characterization of risk, 
e.g., exposures to dioxins and furans in home-produced beef and milk and methyl
mercury in recreationally caught freshwater fish).

 
# They were based on a 16-sector template, which enhanced resolution in assessing

exposure.  The 16 sectors were the quadrants defined by the intersection of radii
to the north, east, south, and west and rings at 2, 5, 10, and 20 kilometers. 

1.3.1 Phase I Risk Assessment Overview

The following provides an expanded discussion of the 1999 risk assessment.  For more
details, the reader is referred to the risk assessment background documents for the 1999 final rule
(RTI, 1999).

The risk assessment for the 1999 rule was based on an analysis of 76 facilities.  This
sample of facilities comprised 66 facilities selected by stratified random sampling and an
additional 10 facilities that had previously been selected in the risk analysis for the 1996
proposed rule.  This sample of facilities represented nearly half of the facilities known to be
burning hazardous waste at that time in cement kilns, lightweight aggregate kilns, and
incinerators within the continental United States.5  Emissions were estimated for each facility
based on site-specific stack gas emission concentrations and flow rates measured during trial
burns or compliance tests.6  EPA used a design level for projecting what a facility’s emissions
would be when in compliance with the MACT standards: facilities emitting below the design
level during trial burn and compliance tests were assumed to continue to emit at the levels
measured in the tests while facilities emitting above the design level were assumed to reduce
their emissions to the design level.  The design level was taken as 70 percent of the MACT
standard.7  The percentage reduction in emissions required to meet the design level was applied
to each chemical constituent to which the standard applied.
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8 The sectors were defined by the intersection of concentric rings at 2, 5, 10, and 20 kilometers and radii
extending to the north, south, east, and west.
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The analysis for the 1999 rule assessed the risks to the entire population of individuals
living within 20 kilometers (or about 12 miles) of the sample of facilities.  A study area
composed of 16 sectors was established for each facility.8  U.S. Census and Census of
Agriculture data were used to estimate the numbers and ages of individuals living in farm
households by type of farm and the population of individuals living in non-farm households for
each of the 16 sectors.  Individuals were grouped into four primary age categories: 0 to 5 years,
6 to 11 years, 12 to 19 years, and 20 years of age and older.  Additional age categories were used
for assessing risk from PM.  Within each study area, three or four bodies of water were chosen
for analysis based on their proximity to the sample facility and the likelihood of their being used
for recreational purposes or if they were known to supply drinking water to the surrounding
community.  The watershed of each waterbody was delineated out to a distance of 20 kilometers
from the facility.  The analysis assumed that a portion of the households in each study area
would engage in recreational fishing, based on the prevalence of recreational fishing in national
surveys, and that recreational anglers would fish at all of the waterbodies delineated in a given
study area.

The analysis for the 1999 rule assessed risks from multiple exposure pathways, including
inhalation; incidental ingestion of soil; consumption of drinking water; consumption of
home-produced fruits and vegetables; and consumption of home-produced meat, milk, poultry,
fish, and eggs.  Exposure pathways varied depending on the particular receptor population (e.g.,
home gardeners, dairy farmers, recreational anglers) and the types of activities that lead to
human exposures.  Age-specific rates of mean daily food intake and media contact rates were
used in conjunction with sector-specific concentrations of chemical contaminants in media and
food to calculate the total dose to an individual from all exposure pathways combined. 
Distributions of individual risks were generated for each receptor population by weighting sector
estimates of individual risk with sector-specific population weights and facility-specific
sampling weights.  Lifetime average daily dose was used for assessing cancer risk, and average
daily dose (reflecting less than lifetime exposure) was used for assessing risks of noncancer
effects.  For certain exposure pathways (e.g., ingestion of dioxins in beef and milk and mercury
in fish), an exposure parameter variability analysis was performed.  This was accomplished using
a combination of exposure factor distributions (i.e., age-specific distributions of food intake rates
and duration of exposure), a life table analysis (to adjust for changes in age-specific intake rates
over the duration of exposure), and Monte Carlo sampling (to generate distributions of risks for a
receptor population as a whole from sector-specific risk distributions).

The risk assessment for the 1999 rule also included a screening-level ecological analysis. 
The analysis compared  model-estimated media concentrations to media-specific
ecotoxicological criteria that are protective of multiple ecological receptors.  These included
criteria for soils, surface waters, and sediments.  For assessing ecological risks from dioxins in
surface water, direct comparisons were made of estimated intakes by fish-eating birds and
mammals of 2,3,7,8-tetrachlorodibenzo(p)dioxin (TCDD) toxicity equivalents (TEQ) to
ecotoxicological benchmarks for TCDD in order to account for the widely differing rates of
bioaccumulation of the various TCDD and dibenzofuran congeners in fish.
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9 An MOE less than 1 (shown in bold in Tables 1-1, 1-2, and 1-3) indicates the estimated exposure exceeds
a level of concern.  In this instance, the multiple by which the estimated exposure is above the level of concern
would be represented by the inverse of the MOE.

10 The MOE values are based on the 90th percent upper confidence limits on the risk estimates whenever
confidence limits, which account for sampling error, were available.

11 The MOE values do not account for emissions from other units at hazardous waste combustion facilities,
nor do they account for background exposures from other, non-hazardous waste sources.  Background exposures can
be significant, particularly for dioxin, mercury, and lead.

12 See U.S. EPA (1985) and U.S. EPA (2000).  Note that the latter document is a draft document and does
not necessarily represent EPA policy regarding the characterization of risks from dioxins and related compounds. 

13 In addition, the MOE for chlorine was adjusted to account for changes in the RfC since the 1999 risk
assessment (from 1 :g/m3 to 0.2 :g/m3).  See U.S. EPA (1999). 
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1.3.2 Phase I Risk Assessment Results Summary

Detailed risk results for all human receptor populations and for the ecological risk
analysis are contained in a separate six-volume series of documents (RTI, 1999).  The risk
results for human receptor populations are summarized here in terms of the “margin of
exposure.”  In general, the margin of exposure, or MOE, is the ratio of the benchmark dose or
point of departure (POD), the reference dose (RfD), or the reference concentration (RfC) to the
estimated dose or air concentration for a given receptor.  In analogous fashion, the MOE is taken
here to be the multiple by which the estimated exposure is below an exposure level that could be
a cause for concern from a risk management perspective, in this case a lifetime excess cancer
risk of 1E-5 and a hazard quotient (HQ) = 1 for noncancer effects. The higher the MOE, the
greater the margin between the exposure and a risk level of concern.9

Tables 1-2, 1-3, and 1-4 show the MOE for the chemical contaminants evaluated in the
1999 risk assessment for the Phase I source categories for the regulatory baseline and assuming
compliance with the 1999 MACT standards.  Exposure factors (e.g., intake rates and duration of
exposure) were tailored to the specific receptor populations evaluated in the 1999 assessment. 
The MOE listed in the table for a given percentile is the lowest for any route of exposure
(inhalation or ingestion) for the receptor population having the highest estimated risks (whether
cancer or noncancer).10, 11 For dioxin TEQ, MOEs are given for the cancer slope factors from
both EPA’s 1985 health assessment document and from EPA’s recent draft dioxin
reassessment.12, 13  With few exceptions, all MOEs are rounded down and reported to one
significant figure.
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Table 1-2.  1999 MACT Rule—MOE for Cement Kilnsa

Constituent
50th

 Percentile
90th

 Percentile
95th

 Percentile
99th

 Percentile

Baseline
antimony 1,000,000 1,000 1,000 -
arsenic 20,000 1,000 1,000 500
barium 50,000 2,000 1,000 1,000
beryllium 1,000,000 20,000 20,000 10,000
cadmium 3,000 500 300 100
chlorine 300 20 20 10
chromium (III) 20,000,000 5,000,000 2,000,000 1,000,000
chromium (VI) 10,000 10,000 10,000 3,000
dioxin TEQ (1985) 50 5 3 1.4
dioxin TEQ (2000) 8 0.8 0.5 0.2
hydrogen chloride 1,000 300 200 100
lead 50 30 20 20
mercury 50 3 2 1.3
nickel 100,000 10,000 5,000 3,000
selenium 10,000 2,000 1,000 1,000
thallium 10,000 500 100 30

MACT Standards
antimony 1,000,000 1,000 1,000 -
arsenic 20,000 2,000 1,000 1,000
barium 50,000 2,000 1,000 1,000
beryllium 1,000,000 30,000 20,000 10,000
cadmium 10,000 2,000 1,000 500
chlorine 400 40 20 20
chromium (III) 20,000,000 5,000,000 2,000,000 1,000,000
chromium (VI) 10,000 10,000 10,000 5,000
dioxin TEQ (1985) 100 10 5 2
dioxin TEQ (2000) 10 1.7 0.8 0.3
hydrogen chloride 1,000 300 300 200
lead 1,000 500 500 300
mercury 50 5 3 1.7
nickel 100,000 10,000 5,000 3,000
selenium 10,000 2,000 1,000 1,000
thallium 10,000 500 100 50

a MOE below an exposure associated with a cancer risk of 1E-5 and an HQ of 1.
  Dash (-) indicates percentile not estimated due to small sample size or an insufficient spread of
  modeled risks.
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Table 1-3.  1999 MACT Rule—MOE for Lightweight Aggregate Kilnsa

Constituent
50th

 Percentile
90th

 Percentile
95th

 Percentile
99th

 Percentile
Baseline

antimony 100,000 10,000 10,000 10,000
arsenic 10,000 3,000 2,000 1,000
barium 500,000 20,000 20,000 10,000
beryllium 300,000 50,000 50,000 20,000
cadmium 20,000 2,000 1,000 1,000
chlorine 1,000 100 60 20
chromium (III) 10,000,000 3,000,000 2,000,000 1,000,000
chromium (VI) 30,000 3,000 2,000 1,000
dioxin TEQ (1985) 20 3 1.4 0.5
dioxin TEQ (2000) 4 0.4 0.2 0.08
hydrogen chloride 100 50 30 20
lead 1,000 500 500 300
mercury 500 50 20 -
nickel 50,000 3,000 1,000 1,000
selenium 500,000 300,000 100,000 100,000
thallium 100,000 30,000 20,000 5,000

MACT Standards
antimony 100,000 10,000 10,000 10,000
arsenic 10,000 5,000 5,000 2,000
barium 500,000 30,000 20,000 10,000
beryllium 300,000 100,000 50,000 30,000
cadmium 30,000 5,000 5,000 2,000
chlorine 1,000 200 60 60
chromium (III) 20,000,000 10,000,000 3,000,000 2,000,000
chromium (VI) 50,000 5,000 5,000 1,000
dioxin TEQ (1985) 100 50 20 10
dioxin TEQ (2000) 10 8 3 2
hydrogen chloride 500 100 100 50
lead 1,000 1,000 1,000 1,000
mercury 500 50 30 -
nickel 50,000 3,000 1,000 1,000
selenium 500,000 300,000 100,000 100,000
thallium 100,000 30,000 20,000 5,000

a MOE below an exposure associated with a cancer risk of 1E-5 and an HQ of 1.
  Dash (-) indicates percentile not estimated due to small sample size or an insufficient spread of
  modeled risks.
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Table 1-4.  1999 MACT Rule—MOE for Incineratorsa

Constituent
50th

 Percentile
90th

 Percentile
95th

 Percentile
99th

 Percentile
Baseline

antimony 10,000 50 50 -
arsenic 10,000 100 100 50
barium 500,000 10,000 5,000 5,000
beryllium 1,000,000 10,000 10,000 3,000
cadmium 20,000 500 500 20
chlorine 200 20 20 5
chromium (III) 50,000,000 3,000,000 2,000,000 1,000,000
chromium (VI) 10,000 500 100 20
dioxin TEQ (1985) 300 10 5 1.0
dioxin TEQ (2000) 50 1.7 0.8 0.17
hydrogen chloride 10,000 1,000 200 100
lead 20 10 10 8
mercury 50,000 300 100 50
nickel 100,000 20,000 10,000 1,000
selenium 3,000,000 30,000 20,000 10,000
thallium 100,000 10,000 1,000 100

MACT Standards
antimony 50,000 300 300 100
arsenic 50,000 500 500 500
barium 2,000,000 50,000 30,000 10,000
beryllium 1,000,000 20,000 10,000 10,000
cadmium 100,000 5,000 2,500 500
chlorine 400 200 60 10
chromium (III) 100,000,000 10,000,000 10,000,000 5,000,000
chromium (VI) 20,000 2,000 1,000 200
dioxin TEQ (1985) 1,000 50 20 10
dioxin TEQ (2000) 100 8 4 1.7
hydrogen chloride 10,000 1,000 1,000 500
lead 1,000 500 500 300
mercury 50,000 300 100 50
nickel 200,000 30,000 10,000 5,000
selenium 3,000,000 30,000 20,000 10,000
thallium 1,000,000 30,000 2,000 1,000

a MOE below an exposure associated with a cancer risk of 1E-5 and an HQ of 1.
  Dash (-) indicates percentile not estimated due to small sample size or an insufficient spread of
  modeled risks.
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14 Although emissions and stack data were imputed by random selection from a pool of measurements for
similar units for sources where stack gas measurements were not available, these data were not used in the statistical
comparisons.

15 In the 1999 rule, the design level was taken as 70 percent of the standard.  For the currently proposed
standards, the design level is generally the lower of (1) 70 percent of the standard; or (2) the arithmetic average of
the emissions of the best performing sources, as defined by the CAA.
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1.4 Overview of Comparative Analysis

The objective of the comparative analysis is to evaluate the differences between the
sources subject to the 1999 HWC MACT rule and the sources subject to the currently proposed
MACT rule with respect to four key factors.  These factors may be described generally as
emission rates, stack gas characteristics, meteorological conditions, and exposed populations. 
Each factor (or megavariable) comprises one or more subvariables (e.g., stack height) or
frequency variables (e.g., frequency of wind speeds of 1 meter per second or less).  For each
variable, formal hypothesis tests were performed to determine if the variable was significantly
different between the sources being compared.  For example, to compare the projected emissions
of a pollutant under the currently proposed rule and the emissions under the 1999 MACT rule, a
hypothesis test was performed on the upper tail (e.g., 90th percentile emission rate) of the
distribution of emissions as they are characterized for the proposed rule versus the distribution of
emissions as they were characterized for the 1999 MACT rule, to determine if they were
significantly different.  For the source categories that were not a part of the previous risk
assessment (i.e., liquid fuel-fired boilers, solid fuel-fired boilers, and hydrochloric acid
production furnaces), comparisons were made with the incinerator source category from the
1999 rule.  For the other source categories, comparisons were made with their counterparts from
the 1999 rule.  The comparisons were conducted assuming compliance with the 1999 MACT
standards and the proposed MACT standards (with standards at either the floor or beyond-the-
floor levels, as the case may be).

Similar to the risk assessment done for the 1999 rule, emissions for the proposed rule
were estimated for each facility based on site-specific stack gas concentrations and flow rates
measured during trial burn or compliance tests.14  The emission projections assume that sources
will design their systems to meet an emission level below the proposed standards in order to be
in compliance with the standards at all times.  This level is called the “design level” and accounts
for the expected variability in emissions during facility operations.  Where the test data indicate
the emissions are below the design level, it was assumed the source would continue to emit at the
levels measured in test.  For sources emitting above the design level, it was assumed the source
would reduce emissions to the design level.15

The comparative analysis tested the upper tail (90th or 75th percentile), lower tail (10th
or 25th percentiles), or median of the distributions depending on the particular variable and its
relationship to risk.  For emissions, higher emission rates lead to higher risk and, therefore,
hypothesis tests were performed on the upper tail of the distribution.  For stack height, the lower
tail was tested because lower stack heights lead to higher risks to individuals living in the
vicinity of the source.  Hypothesis tests were also performed on a second stack gas characteristic,
termed the buoyancy flux.  Buoyancy flux represents the heat released to the atmosphere through
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16 For example, if the 90th percentile emission rate for liquid fuel-fired boilers is less than 90th percentile
emission rate for incinerators (as characterized in the 1999 rule) and the difference is statistically significant, a score
of +1 would be assigned because lower emissions lead to lower risk, all other things being the same.
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the stack and, as such, is determined by the temperature and volume of the stack gases.  The
greater the heat release, the greater the buoyancy of the stack gas plume and the lower the impact
on nearby, ground-level receptors.  Because lower buoyancy is associated with higher risk,
hypothesis tests were performed on the lower tail of the distribution.  If hypothesis testing could
not be performed at the desired percentile (e.g., 90th / 10th percentile) due to data limitations, the
next closest percentile was used (e.g., the 75th / 25th percentile or the 50th percentile).  For
variables that affect risk but do not have the same relation to risk under all conditions (or at least
a wide range of conditions), the median of the distribution was tested.  Most of the
meteorological variables fall into this category.

To simplify the analysis, all comparisons were done at the site level (i.e., by facility). 
For sites with multiple stacks, emissions were totaled across stacks and stack characteristics (i.e.,
stack height and buoyancy flux) were averaged.  Meteorological data were taken from the closest
available meteorological station.

Population data were subjected to a regression analysis prior to hypothesis testing.  The
purpose of the regression analysis was to analyze the distribution of population with respect to
distance from the site.  Specifically, an exponential regression model was fitted to the sector-
level population data for farm and non-farm households for each hazardous waste combustion
facility site where such data had been collected and analyzed.  Population data originally
collected for the risk analysis for the 1999 rule was supplemented with data collected for the
additional categories of sources subject to the currently proposed rule (i.e., solid and liquid
fuel-fired boilers and hydrochloric acid production furnaces).  The regression analysis provided
two parameters for each site, alpha and beta.  The alpha parameter is the intercept and the beta
parameter is the slope of the log-scale transformation of the regression model.  Alpha is a
measure of the population density adjusted for the frequency of wind direction in each quadrant
and, as such, is an indicator of the “time-exposed” population (i.e., the time the wind blows
towards the population).  Beta is a measure of the distribution of population with distance from a
source.  For a uniform population density about a source, a beta coefficient equal to 2 is expected
because area increases as the square of the distance.  For betas less than 2, the population is
distributed relatively closer to the source and for betas greater than 2, the population is
distributed relatively further from the source.  A lower beta is associated with higher risk. 
Therefore, for the purpose of the comparative analysis, hypothesis tests were performed on the
lower tail of the distribution of betas across the sites.  By contrast, alpha is more closely
associated with overall risk to the population (e.g., population risk) and, therefore, hypothesis
tests were performed on the median of the alpha distribution.

Once the hypothesis tests were performed, scores were assigned to the outcomes.  If the
hypothesis test indicated no significant difference (at a p value of 0.1), a neutral score (0) was
assigned.  If the hypothesis test did indicate a statistically significant difference (p = 0.1), a
positive score (+1) or negative score (-1) was assigned, depending on whether the observed
difference would be expected to lead to lower risk (+1, a “risk-favorable” outcome) or higher
risk (-1, a “risk-unfavorable” outcome).16  These risk inferences were made with the assumption
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17 For example, a higher correlation of emissions with population (as represented by the population density
parameter, alpha) would be assigned a score of -1 because higher emissions in more populated areas leads to higher
risk.  Conversely, a lower correlation of emissions and population would be assigned a score of +1 because lower
emissions in more populated areas (and higher emissions in less populated areas) leads to lower risk.

18 Here, “variable” refers to a variable, subvariable, or frequency variable.
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of “all other things being equal.”   In instances where the differences in percentile values are
statistically significant yet the effect on risk is ambiguous, an “888” score (a “not zero” outcome)
was assigned.  Where hypothesis testing could not be performed due to data limitations, a “999”
score (insufficient data) was assigned.  These scores are termed percentile scores because they
are direct comparisons of the relevant percentiles of the distribution (10th / 90th, 25th / 75th, or
50th percentile).

Because all other things are not equal, hypothesis testing was also performed on
correlations between variables.  If the differences in the correlation coefficients were not
statistically significant (p = 0.1), a neutral score (0) was assigned.  If the difference was
statistically significant, a positive score (+1) or negative score (-1) was assigned, depending on
whether the observed difference would be expected to lead to lower risk (+1) or higher risk
(-1).17   These scores are termed correlation scores because they reflect correlations among the
various parameters.  All combinations of variables were tested for differences in their correlation
coefficients.

A weight-of-evidence approach was used for assessing the overall direction of risk
relative to the 1999 rule.  This was accomplished by aggregating and weighting the scores from
the individual comparisons.  First, an aggregate correlation score was formed from the set of
correlation scores for a given variable by giving equal weights to the correlations with all the
other variables.  Then, an aggregate score for the variable was formed by equally weighting the
aggregate correlation score and the percentile score for that variable.18  Then, the aggregate score
for each frequency variable associated with a subvariable and each subvariable associated with a
megavariable were given equal weights and aggregated.  Finally, the megavariable factors (i.e.,
emissions, stack characteristics, meteorology, and population) were weighted and aggregated. 
(The weights applied to the megavariables were based on an evaluation of the performance of the
comparative analysis methodology, as described in Section 6.0.)  This process was applied to the
subset of comparisons where the only possible scores were “+1,” “-1,” or “0” (i.e., where the
outcome of the hypothesis test was considered to be unambiguously risk-favorable, risk-
unfavorable, or neutral) and a “Grand Score” was computed.  The Grand Score can range from
-1 (least favorable) to +1 (most favorable).

In addition, reliability indices were assigned to each of the hypothesis tests and
aggregated in similar fashion to provide a “reliability index.”  The reliability index reflects the
amount of data available to perform the hypothesis tests and, therefore, the confidence in the test
results.  The  reliability index can range from 1 (most reliable) to 4 (least reliable).  The grand
score was then divided by the associated reliability index to generate a “normalized” Grand
Score.  In addition, the number of +1, -1, 0, 888, and 999 scores were tallied, weighted (as just
described for the Grand Score but using the full set of comparisons), and normalized by the
number of tests performed.  The resulting counts represent the weighted fraction of tests with
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each type of outcome (i.e., weighted by correlation vs. percentile and frequency variable,
subvariable, and megavariable).  This information, together with a specific set a decision rules,
enabled conclusions to be made regarding the anticipated impact on risk vis-a-vis the 1999 risk
assessment.  The information generated by comparative analysis is intended to assist EPA in
making judgments as to whether the emission standards it is proposing for HWCs are generally
protective of human health and the environment, as required under RCRA.



Section 2.0  Phase I and II Source Categories

2-1

2.0 Phase I and II Source Categories
For the purposes of this analysis, subsets of the Old Phase I source categories were used

as the basis for comparison to New Phase I/Phase II categories.  The categories for Phase I (Old
and New) and Phase II HWCs are defined and described below.

2.1 Phase I Categories

The three Phase I categories are all incinerators, cement kilns (CKs), and lightweight
aggregate kilns (LWAKs).

# All Incinerators

– Onsite Incinerators function as part of a larger commercial manufacturing
operation and handle hazardous wastes generated specifically by that
operation (these facilities do not burn wastes for other companies for
profit).  Because onsite facilities play a support role and are not dependent
on earning profit through hazardous waste combustion, they are often
smaller than commercial facilities (their size is dependent on the type of
operation they support) and burn a limited variety of wastes. 

– Commercial Incinerators function specifically as commercial facilities
that earn revenue by burning hazardous wastes.  As such, the incinerators
in this category are often larger (i.e., larger throughput) and burn a greater
variety of wastes than those in the onsite category. 

– Waste Heat Boilers (WHB) recover excess heat generated in the
incineration process as a thermal source for industrial applications rather
than releasing it directly to the environment.  A subset of both onsite and
commercial incinerators have waste heat boilers.

# Cement Kilns (CKs) are the pyroprocessing step in chemically combining a
variety of raw mineral materials into cement. The kilns are rotary kilns (long,
cylindrical, slightly inclined furnaces) into which raw materials are fed at the
upper end and product removed at the lower end. Cement production is an energy
intensive process using coal, oil, and natural gas as fuel. More recently
constructed plants tend to be more fuel efficient, but hazardous waste is used as a
replacement fuel to reduce the operating costs of the kilns. Some waste selectivity
is practiced as elements present in the waste can make the end product unsuitable
for certain uses. 
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# Lightweight Aggregate Kilns (LWAKs) are the pyroprocessing step in
generating a coarse aggregate used in the production of lightweight concrete
products, such as concrete block, structural concrete, and pavement. The process
works by expanding the raw materials, such as clay, shale, slate, and blast furnace
slag, to about twice their original volume, typically in a rotary kiln. This process
is energy intensive, using coal, coke, fuel oil, and natural gas as fuel. In some
plants hazardous waste is used to replace these more expensive fuel types to
reduce operating costs.

2.2 Phase II Categories

The two Phase II categories are boilers and halogen acid furnaces (HAFs).

# Boilers are an enclosed device using controlled flame combustion for recovering
and exporting thermal energy in the form of steam, heated fluid, or heated gases
for onsite process needs.  These units must, by definition, maintain a thermal
energy recovery of at least 60 percent and export and utilize at least 75 percent of
the recovered energy.  Boilers can be further disaggregated based on fuel source
type into solid boilers (SBs) and liquid boilers (LBs).  A liquid fuel-fired boiler is
a device that meets the definition of a boiler and burns any combination of liquid
and gas fuels, but no solids.  A solid fuel-fired boiler is a device that meets the
definition of a boiler and burns solid fuels, including pulverized or stoker coal.

# Halogen Acid Furnaces (HAFs) are an integral component of a chemical
production facility that processes hazardous waste with a minimum as-generated
halogen content of 20 percent to produce an acid product with a minimum
halogen content of 3 percent.  These acid products are subsequently used in a
manufacturing process.

In addition to these distinctions, incinerators (all types) and LBs can be further
categorized as “dry” or “not dry.”  “Dry” refers to a dry air pollution control system (e.g.,
electrostatic precipitators or baghouse).  “Not dry” can be either a wet air pollution control
device (APCD) (e.g., wet scrubber) or no back-end controls.  The distinction is made in the
context of dioxins, because dioxin formation is increased in dry air pollution control systems. 
Dioxin formation is also increased in incinerators that have WHBs and therefore, such
incinerators are included in the “dry” category, regardless of the type of back-end control.

Appendix A provides a complete list of the Phase I and II combustors by category type,
HWC phase to which they belong, and stack versus site ID.  In some cases, multiple individual
stacks occur at the same facility site.  The data presented in Appendix A are the full population
(“universe”) of stacks/facilities (i.e., these are not samples from a larger population).  These data
also include an indicator flag denoting those Old Phase I facilities, out of the universe of Old
Phase I facilities, that were randomly sampled (stratified sampling) for the original Phase I risk
assessment (RTI, 1999).  A total of 76 unique Old Phase I site-level facilities were sampled for
the original Phase I risk assessment.

A summary of the number of unique HWC site-level facilities (i.e., accounting for 
multiple stacks at a single site) by Phase and category is given in Table 2-1.
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Table 2-1.  Number of Unique Sites by Combustor Phase and Category

Phase and Category Number of Sites

Old Phase I All Incinerators 144

Old Phase I CK 18

Old Phase I LWAK 5

Phase II LB 55a

Phase II Dry LB 6

Phase II Not Dry LB 50

Phase II SB 4

Phase II HAF 8

New Phase I All Incinerators 77

New Phase I Dry All Incinerators 18

New Phase I Not Dry All Incinerators 57

New Phase I CK 14

New Phase I LWAK 3
a Although the sum of the “dry” plus “not dry” sites does not necessarily sum to the

total number of sites (see earlier explanation of these categories), ideally they would
not sum to more than the total number of sites.  Indeed, they do for Phase II LBs (by
1) because two sites (LA008213191 and TXD008092793) have multiple stacks
including one in each category.  Thus, these sites have been included in both
categories.
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1 Site-level emissions were aggregated on a source category basis (i.e., incinerators and boilers at the same
site were not combined for purposes of the analysis).
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3.0 Variables Considered and Data Compared
As mentioned previously, a complete list of all risk-affecting variables would include

emission rates, stack characteristics, meteorological variables, population differences (number
and spatial distribution), population makeup, local environmental conditions, and land use. 
Because it is impossible as a practical matter to thoroughly compare all these factors, those
factors believed to be most important and for which data were either available or could be
developed within the resource constraints of this study were selected for comparison. Those
selected data used for the subsequent comparative analyses are described in this section.  They
fall into four general categories: 

# Chemical-specific emission rates
# Stack characteristics
# Meteorological conditions
# Population characteristics.  

For purposes of the subsequent comparative analysis of data distributions, it is useful to
think of these data distributions as comprising up to three categories, termed here megavariables,
subvariables, and frequency variables.  A megavariable is an overall category of data (i.e., the
four general categories listed above).  A subvariable is a more specific category within a
megavariable (e.g., stack height for the stack characteristics megavariable or windspeed within
the meteorological megavariable).  Finally, a frequency variable is relevant for data that describe
time frequencies for certain conditions (e.g., percent of time that the windspeed is less than a
specific velocity).  The data distributions used in the subsequent comparative analyses are
described below in this hierarchical context.  

3.1 Emission Rates

Chemical-specific emission rate is obviously an important risk-affecting variable: as
emission rates increase, risks increase if all other factors remain the same.  For each subcategory
of Old Phase I combustor emissions (e.g., Old Phase I All Incinerators) compared to a
subcategory of Phase II or New Phase I (e.g., New Phase I CK), a distribution of emission rates
(kg/yr) was developed by individual chemical of interest.  These chemical-specific emission
rates reflect aggregate emissions at a site (i.e., where multiple stacks occur at any site, emissions
are summed over all stacks).1  With the exception of sites where multiple stacks occur, site-level
emission rates used in the distributions are measured-only data.  Emissions data that were not
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actually measured, but rather imputed from other data, were not used (to avoid artificially
increasing the number of “observations” by using imputed values even though the sample size
has not really changed), with one exception: where multiple stacks occur at a site, and some of
these stacks have measured emissions rates and others have imputed rates, the imputed rates
were used in estimating the aggregate site emission rates.  It was assumed that the potential for
introducing biases in aggregate emission rates by using imputed data in these multistack
situations was preferable to either ignoring the imputed data and using only the measured data
(which would underestimate site-level total emissions) or not including these sites at all in the
data distribution.  In addition, in a number of cases the units were sufficiently similar to tested
units (so-called “sister” units) that testing was not deemed necessary for purposes of permitting
or compliance.  Therefore, imputation of data from a sister unit for use in estimating site-level
emissions was considered thoroughly appropriate. 

3.2 Stack Characteristics

Characteristics of combustor stacks are also important risk-affecting factors. Two stack
characteristic subvariables are considered—height and buoyancy flux.  High stacks induce more
atmospheric mixing and dispersion of chemicals than do low stacks.  Therefore, all other factors
being the same, high stacks reduce risks relative to low stacks.  Buoyancy flux is a measure of
the heat contained in the exit gases and therefore, is an indicator of the potential rise of the
plume (and therefore, atmospheric dilution) due to buoyancy effects arising from the difference
in the density of the exit gases and the surrounding air.  Therefore, all other factors being the
same, risks decrease with increasing buoyancy flux.  Buoyancy fluxes were calculated as part of
this study for each stack as a function of stack gas exit velocity, stack diameter, exit gas
temperature, and long-term average ambient site temperature as follows (Briggs, 1975):
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(3-1)

where 

Fb =  buoyancy flux (m4/s3)
g =  gravitational acceleration (m/s2)
vs =  stack gas exit velocity (m/s)
ds =  stack diameter (m)
)T =  Ts - Ta (K)
Ts =  stack gas temperature (K)
Ta =  ambient temperature (K).

Where multiple stacks occur at a site, average stack height and average buoyancy flux
were calculated and used in the subvariable distributions. Only actually measured values were
used in the distributions.  In instances where multiple stacks occur at a site and some of these
stacks have imputed data, still only the measured data were used to estimate the site average. In
general, stack data were reported for all stacks for which emissions test data were available.
(Unlike aggregate emission rates, where omitting stacks causes an obvious bias in the site total,
using measured-only data to estimate site averages was felt to be preferable to using imputed



Section 3.0  Variables Considered and Data Compared

3-3

data. For buoyancy flux, if any of the input variables used in the buoyancy flux calculation were
imputed, the buoyancy flux was also considered imputed and not used.

3.3 Meteorological Conditions

Five meteorological subvariables were identified as presumed important risk-affecting
factors: atmospheric mixing height, windspeed, atmospheric stability class, wind direction
variability, and mean precipitation.  

Mixing height is the height above the ground surface through which relatively vigorous
vertical mixing occurs.  Mixing height was estimated using the interpolation scheme employed
in the RAMMET meteorological processor, which uses the twice-daily mixing heights from the
nearest National Weather Service upper air observation site, coupled with the stability category
determined for the hour. The subvariable mixing height is comprised of three frequency
variables that give the percentage of time that the site mixing height is less than or equal to 500
meters, 1000 meters, and 1500 meters, respectively.  

Wind speed affects risks by creating turbulence and dispersion of contaminants, thereby
reducing risks.  However,  the turbulence created by the wind also reduces plume rise, which
increases risk.  Therefore, although wind speed is an important determinant of risk, it is not
possible to draw a general conclusion about what effect it will have because it depends on the
values of other parameters, such as stack height and buoyancy flux.  The windspeed subvariable
is comprised of four frequency variables that give the percentage of time that the site windspeed
is less than or equal to 1 m/s, 3 m/s, 5 m/s, or 10 m/s, respectively.

Atmospheric stability is a classification scheme that attempts to take into account both
the effects of mechanical turbulence and the effects of thermal turbulence, or convection.  
Unstable conditions promote greater atmospheric mixing and contaminant dispersion.  However,
greater mixing can bring an elevated plume to the ground more quickly, particularly in the
presence of convection.  Therefore, although atmospheric stability is an important determinant of
risk, it is not possible to draw a general conclusion about what effect it will have because it
depends on the values of other parameters, such as stack height and buoyancy flux.  The stability
class subvariable is comprised of two frequency variables that give the percentage of time that
the site stability class is within (1) Class A, B, or C (least stable categories) or (2) Class E, F, or
G (most stable categories).

Wind direction variability affects risks inversely.  If a site has a predominant wind
direction (low variability), then that condition increases risks for the population downwind.  A
higher variability does not necessarily decrease short-term air concentrations, but it does mitigate
high-end risks by not exposing the same population repeatedly (and therefore, having the effect
of reducing long-term air concentrations).  The wind direction variability subvariable is
represented by the “circular variance” (Mardia, 1972) of wind direction.  The circular variance
was calculated for this analysis for each site given that site’s wind direction frequency data. 
These data describe the percentage of time that the wind direction is in each of 16 radial
directions (i.e., north, north-northeast, northeast, east-northeast, east, etc.).  The circular variance 
is normalized on a scale of 0 to 1.  Values approaching 1 reflect widely dispersed wind direction,
while values approaching 0 reflect a strong predominant wind direction.  Therefore, all other
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2 We can conclude this as a general matter except in the relatively unlikely circumstance that population is
distributed in the same way as the distribution of wind direction.  
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factors being equal, a site having a higher circular variance than another site would expect
decreased exposure and risk.2  The circular variance (S0) was calculated (Mardia, 1972) as

( )S F Sini i
i

= ∑ Θ Θ (3-5)

where

1i = angle from due north of ith wind direction (0 degrees for i=1, 22.5 for i=2, etc.)
F1i = relative frequency that wind direction is toward 1i.

Meteorological data used in the comparative analyses are observations on the full
universe of Old Phase I, Phase II, and New Phase I facilities.  The meteorological data were
generated using the meteorological preprocessor PCRAMMET (U.S. EPA, 1995). The
preprocessor pairs hourly surface observations with upper-air measurements. For each
meteorological station modeled, five years of surface and upper-air data were used. 

Hourly surface meteorological data used in air dispersion modeling were processed from
the Solar and Meteorological Surface Observation Network (SAMSON) CD-ROM (U.S. DOC
and U.S. DOE, 1993). The variables include temperature, pressure, wind direction, windspeed,
opaque cloud cover, ceiling height, current weather, and hourly precipitation. Twice daily
mixing height data were gathered from the Radiosonde Data of North America CD-ROM
(NCDC, 1997). 

All meteorological data were considered observations for the purpose of the present
analysis.
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3 The population data were obtained by site, radial distance, and sector.  The exposed population at any
radial distance j was estimated as the total population at j weighted by the percent of time that the wind is in the
direction of each of the four sectors, i.e., NE, SE, SW, and NW.  
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3.4 Population Characteristics

Population characteristics are associated with human health risk in three important ways
that were considered in this analysis.  First, the mere existence of human receptors in the vicinity
of HWCs introduces the possibility of exposure and risk.  Therefore, the first population
characteristic subvariable is related to the total number of receptors within the vicinity of each
site.  More people leads to more total exposure and therefore, greater risk.   We used a radial
distance of 20 kilometers to represent the exposed population because that was the distance used
to characterize the exposed population in the original Phase I risk assessment.  The total
population-related subvariable is denoted as “alpha” (for reasons that will be described shortly)
and is a measure of the average density of the receptor population within 20 kilometers of each
combustor site.  Therefore, all other factors being the same, the higher the value of alpha, the
higher the risk.

Secondly, the spatial distribution of receptors within this 20 kilometer radius also affects
risks.   It is presumed in this analysis that the closer receptors are located to the HWC, the higher
is their exposure and risk.  This simply reflects the fact that, in general, air concentrations are
greater closer to the source, before they have had time to be dispersed and diluted.  This is not
always true, of course.  For example, high stacks with relatively distant population centers may
give rise to higher risks than having those same receptors located closer to the source, because
the exhaust plume may travel some considerable distance before dropping to ground level. 
Nonetheless, for the sources being analyzed, the highest concentrations are expected to occur in
the first kilometer or two, unless there is significant elevated terrain further from the source.

As described in Appendix B, the spatial distribution of receptor-specific population
within the 20 kilometer radial distance around each combustor site was estimated as a continuous
parameter, “beta,” from geographic information systems (GIS) data.  The GIS data consist of
census estimates of the number of receptors located within 16 sectors around each combustor
site.  The 16 sectors are defined by radial distances from the site (2 km, 5 km, 10 km, and 20 km)
and the four cardinal directions (north, east, south, west) from each combustor site.  These data
were then used to fit regression models of the general form

P Dij ij= α β (3-6)

where

Pij = the number of exposed receptors3 at site i within radial distance j
Dij = radial distances
" = regression constant (to be estimated for each site)
$ = regression constant (to be estimated for each site).
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4 Of 70 sites in the “old Phase II” universe, 5 of these sites are not in the (new) Phase II universe. 
Conversely, of 67 sites in the (new) Phase II universe, 2 of these sites are not in the old Phase II universe.

5 Appendix B shows population data for 40 sites, not 41.  It is noted that one of these Appendix B sites
(TXD008092793) includes 2 HAF stacks and 1 LB stack.  Thus, it counts as a HAF “site” (with both stacks) as well
as a LB “site” for purposes of this analysis.
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Alpha is a measure of the average receptor density at the site while beta is a parameter
that quantifies the spatial distribution of these receptors.  If the population is approximately
uniformly distributed with land area, beta would take on values near 2.0, because land area
increases with the square of the radial distance from the site (just as the area of a circle increases
with the square of its radius); hence, the number of receptors would increase with the square of
distance.  Values of beta less than 2.0 imply that receptors are more “source-concentrated” (i.e.,
have higher densities close to the source than farther away).  For example, a beta of 1.0 implies
that receptor numbers are increasing linearly with radial distance from the source.  Given that
land area (at least total land area if not residential land use) necessarily increases as the square of
distance from the source, it can be seen that population density must be higher close to the
source.  This situation bodes unfavorably for risk, all other factors being equal.  Conversely,
values of beta greater than 2.0 imply that population densities increase with radial distance, a
risk-favorable condition.

Finally, in addition to total site population density (alpha) and site spatial distribution
(beta), risk is associated with certain subpopulations of receptors.  For example, exposure and
cancer risk to dioxins was found to be highest to children of dairy farmers who consume home-
produced milk.  Accordingly, the population GIS data were collected specific to certain
subpopulations of receptors and the regression model (Equation 3-1) was fit separately for each
of these subpopulations, so that the estimated constants alpha and beta are available on a
subpopulation-specific basis.  The subpopulations considered that were used in the comparative
analysis (other subpopulations were also analyzed, as described in Appendix B) were

# Child residents aged 0 to 5 years (for lead)
# Farm families (for dioxin)
# Total population (all other chemicals).

As described in Appendix B, the Old Phase I, Phase II, and New Phase I variable
distributions for the alpha and beta parameters do not reflect the universes of these facilities, but
rather are random samples.  For Old and New Phase I, the distributions reflect the 76 sampled
stacks for the original Phase I risk assessment.  For Phase II, 41 sites were selected from a
precursor (“Old Phase II universe”) that varied slightly from the “Phase II universe” (current) as
used elsewhere in this report.4  Of these 41 sites,5 all solid boilers and HAFs in the (old) Phase II
universe are included in the sample.  For the liquid boilers (59 sites in the old Phase II universe),
29 of these were randomly sampled for development of the alpha and beta parameters.  The 29
samples out of 59 sites ensured that the probability of selecting a site that would be in the upper
10th percentile of the 59-site risk distribution would exceed 90 percent.  (This is the same
criterion that was used to select the sites that were analyzed in the risk assessment for the Old
phase I universe.)  The value of 29 was determined  by solving the following equation
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(developed by RTI) for n using a statistical significance level (", not to be confused with the
population “alpha”) of 0.95 and percentile (p) of 90, and rounding up to the nearest integer:

( )
( )n
p

≥
ln

ln
α
100

(3-7)

For new Phase I sources, population data for 35 of the 77 incinerator sites, 11 of the 14
cement kiln sites, and 3 of the 3 lightweight aggregate kiln sites were available from the original
Phase I risk assessment and were used to develop the alpha and beta distributions.

The complete distribution of site samples for determination of population characteristics
across the New Phase II sites and combustor categories  is included in the Appendix A data,
under the field “New Phase II Population Parameter Sampled?”  Appendix A also provides the
distribution of Old Phase I stacks and combustor categories sampled out of the Old Phase I
universe under the field “Old Phase I Risk-Modeled?”
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4.0 Statistical and Graphical Methods 
4.1 Principles of Interval Estimation and Hypothesis Testing

4.1.1 Overview

In this section, basic principles of confidence interval estimation and hypothesis testing
will be reviewed.  Interval estimation of various Phase I and II population parameters (e.g.,
means and percentiles of emissions) will be described in Section 4.2, while tests for hypotheses
about these parameters (such as “Phase I and II mean emission rates are equal”) will be
presented in Section 4.3.  In this section, for simplicity, the term “Phase II” should be understood
to refer generically to either Phase II or New Phase I data.  In Section 4.4, a graphical method
(cumulative density [CDF] plots) for comparing Phase I and Phase II distributions will be
explained. Finally, special problems associated with inferences based on tests or interval
estimates computed from small samples will be discussed in Section 4.5.  It is noted that SAS
analyses of comparisons between Phase I and II data were performed using the methods
described in this section, and all methods are reviewed here for completeness.  Not all of the
results of these methods, however, were considered appropriate to carry forward into the final
comparative analyses, implemented by the computer program RelRisk and described in
Section 6.  The methods used by RelRisk are described in Section 6.

4.1.2 Precision and Bias

Population parameters (e.g., Phase I mean emission rates) are estimated by selecting a
random sample from the population of interest (e.g., Phase I incinerators), making measurements
on the sample members, and then generating an appropriate statistic (e.g., the sample mean
emission rate).  It is intuitive that not every sample estimate is good, in the sense that its value is
close to that of the unknown population parameter.  In particular, the sample statistic may be
biased, imprecise, or both.  Figure 4-1 illustrates four possibilities as distinct shot patterns
around a bull’s-eye; each bull’s-eye represents conceptually a population target parameter, while
the shots are statistical estimates of the parameter obtained from repeated sampling of the target
population.  Figure 4-1A shows a tight clustering of the shots outside of the bull’s-eye and thus
illustrates the case where the statistical estimates are biased but precise.  Such bias—or
systematic errors—may result from various causes, including measurement bias and sampling
bias.  Measurement bias occurs when the instrument is inaccurate (e.g., from improper or
inadequate calibration, from the effect of interferences in a chemical analysis).  Sampling bias
can occur when the sampling mechanism is not random and favors some members of the
population over others.  Note that increasing the sample size does not affect the bias; hence, to
avoid bias, one must be sure to use proper instrumentation and sample designs.
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D. UNBIASED AND PRECISE

Figure 4-1. Bias and precision as represented by shot
patterns on a target.

The statistical estimates in Figures 4-1B and 4-1D are not skewed in any particular
direction, thus there does not appear to be any bias.  However the pattern in 4-1B is highly
dispersed around the true parameter value.  This is indicative of considerable heterogeneity in
the target population and/or considerable random measurement error (e.g., from an imprecise
instrument), which leads to imprecision in the sample statistics.  Imprecision and heterogeneity
are reflected in increased dispersion of the statistical estimates around the value of the target
parameter.  In situations like Figure 4-1B, a larger sample size could be used to reduce the
uncertainty in the estimates; the result would be something like the tight clustering shown in
Figure 4-1D.  

Environmental quality decisions frequently are made on the basis of probabilities derived
from the sample estimates by the application of statistical inferential procedures.  The computed
probabilities support the acceptance or rejection of two competing hypotheses, the null and the
alternative.  For example, in a study comparing the emission rates of Phase I and II combustors,
one might consider the null hypothesis (H0) to be that the emission rates of the Phase I and II
populations are approximately equal, while the alternative hypothesis (Ha) is that they are
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different from one another.  Given these two competing hypotheses, imprecision and/or bias
inherent in the sample estimates of the desired population parameters create the potential for two
types of decision errors.  (Note:  Since the bias is unknown, one must generally assume it to be
zero in making calculations.) 

So-called Type I errors occur when the null hypothesis is incorrectly rejected, e.g., Phase
I emissions that are approximately equal to Phase II emissions are erroneously judged to be
significantly different.  A Type II error occurs when the emission rates of the Phase I and II
combustors are erroneously judged to be approximately equal.  Type I and II errors are often
compared to the judicial errors of convicting an innocent man (Type I) or of letting a guilty man
go free (Type II).  When we decrease the probability of one error, we coincidentally (and nearly
inevitably) increase the probability of the other.  Thus a subjective decision is usually made to
guard against one at the expense of the other.  Much like the judicial system analogy, the
scientific community has focused on protecting against Type I errors rather than Type II errors. 
There are two statistical tools available to help scientists and regulators make decisions, based on
sample estimates, such that the error rates are taken into account:  confidence intervals and
hypothesis tests.  

4.1.3 Quantifying Sampling Error:  Confidence Intervals

Population variability and sampling and measurement error obviously affect the
imprecision in sample estimates.  The imprecision results in “sampling error” in the estimates
computed from the sample.  The standard error of a sample estimate of a population parameter
provides a quantitative expression of the sampling error.  One way to account for sampling error
is to use the sample estimate and its standard error to construct confidence intervals for the
population parameter.  Such an interval has some known probability (e.g., a confidence level of
95 percent) of containing the true population parameter, in the sense that if the entire sampling
and measurement process were repeated a large number of times, then the percentage of the
intervals that actually cover the true value would equal the prescribed confidence level.  The
confidence interval is therefore a statement about the confidence we have in the sample estimate
of a population parameter, 2.  

Algebraically, the general expression for a two-sided 1-" ×100% confidence interval is

[ ]Pr a a1 2 1≤ ≤ = −Θ α (4-1)

where

1-" = the desired confidence level
a1 = the 1-"/2 lower bound of the confidence interval for 2
a2 = the 1+"/2 upper bound of the confidence interval for 2.

The bounds a1 and a2 of the confidence interval are the “confidence limits”; their
magnitudes are a function of the estimate and its standard error and depend on the sample size
and the probability distribution of the estimate.  By convention, the confidence level, 1-", is
expressed as a percent (e.g., 95 percent).  If we specify "=0.05, then we are in effect saying that



Section 4.0  Statistical and Graphical Methods

4-4

intervals we have constructed have a 5 percent chance of not covering the true population
parameter and a 95 percent chance of covering it.  

Two-sided 100×(1-")% confidence intervals are appropriate when one desires a sample
estimate of an unknown population parameter together with a measure of the amount of
uncertainty in the estimate.  Also, the 100×(1-")% confidence intervals of two estimates (e.g.,
the sample mean lead emission rates of Phases I and II) can be compared to determine the degree
of overlap.  The width of the confidence interval (i.e., a2-a1) provides a measure of the precision
of the estimate; the smaller the width, the greater the precision.  The confidence interval width
depends on the size of the standard error of the estimate (a function of the variability of the
measurement and the sample size), the sample size itself, and the specified confidence level ("). 
When each of the other two factors is held constant, the following changes will result in
narrower confidence intervals for population parameters such as emission rates:

# Decreasing the variance
# Decreasing the confidence level (e.g., going from 95 percent to 80 percent

confidence)
# Increasing the sample size.  

In general, the variance is comprised of both inherent variability within the population
and the measurement error uncertainty, and only the latter is subject to control (e.g., by using a
more precise instrument).  Specific formulae, and details for the construction of confidence
intervals for a variety of population parameters, are presented in Section 4.2.  

4.1.4 Quantifying Sampling Error:  Hypothesis Tests

In the decision-making process, hypothesis testing provides an alternative to the
comparison of confidence intervals for accounting for the uncertainty in sample data.  There are
several possible sources of uncertainty, including

# Sampling variation specific to the design employed to collect the data 
# Intrinsic natural variation among population members
# Temporal or spatial variation
# Measurement or laboratory error
# Model misspecification error (e.g., in Monte Carlo risk assessments).

In an environmental study to compare combustor emissions in two populations (e.g.,
Phase I incinerators vs.  Phase II liquid boilers), one may have an a priori hypothesis that
emission rates are greater in one population than in another.  In that case, either of two pairs of
one-sided null and alternative hypotheses may be evaluated,

H vs Ha0 1 2 1 2: . :θ θ θ θ≤ > (4-2)
or

H vs Ha0 1 2 1 2: . :θ θ θ θ≥ < (4-3)
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where (for example)

21 = the Phase I incinerator population emission rate
22 = the Phase II liquid boiler population emission rate.  

Equation 4-2 evaluates an upper one-sided alternative hypothesis, while Equation 4-3
evaluates the complementary lower one-sided alternative.  

Alternatively, if there is no strong a priori evidence to support the direction of the
difference, a more general two-sided alternative hypothesis may be specified:

H vs Ha0 1 2 1 2: . :θ θ θ θ= ≠ (4-4)

Having selected the population parameters of interest (e.g., the mean TEQ emission rate)
and chosen null and alternative hypotheses appropriate to the decision under consideration, the
next step is to choose a statistical test that can be used to determine which hypothesis (H0 or Ha)
is better supported by the sample data.  Statistical tests are mathematical models that are used to
predict the distributions of test statistics when the null hypothesis is true.  These are the
distributions one would expect to obtain from conducting thousands of surveys or experiments
and plotting the frequencies of the computed test statistics.  These distributions, called sampling
distributions, reflect the uncertainty in the sample estimates of the values of the test statistic.  

Statistical tests are commonly named for their sampling distributions (e.g., t-test or chi-
squared test).  The test statistics themselves are usually simple algebraic functions of the sample
statistics.  For example, the test statistic for the test against either the two-sided or the one-sided
alternatives for comparing the mean lead emissions of Phase I (01) to the mean of Phase II (02) 
is a function of the sample size (m and n),  the means (0i), and the variances (Si

2):

(4-5)1 2

1 1
p

x x

s m n

−

+

where
m = Phase I sample size
n = Phase II sample size

(4-6)

Statistical theory ensures that when certain assumptions hold and the null hypothesis is
true, the sampling distribution of the test statistic shown in Equation 4-5 will be a t-distribution
with m+n-2 degrees of freedom.  Thus the associated statistical test is called a t-test.  There is
actually an entire family of t-distributions, each with a different degrees of freedom.  

The sampling distributions of the test statistics should not be confused with the
population distributions from which the samples have been collected.  Whereas the latter are the
distributions of the combustor emissions under study, the former are statistical models of the
behavior of statistics calculated from samples of the combustor sites.  Some statistical tests,
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called parametric tests (e.g., t-tests), require that the natural populations be normally distributed,
while others, called nonparametric tests, make no assumptions about the distribution of the
natural populations.

All statistical hypothesis tests are mathematical models.  In the case of t-tests and chi-
square tests, the distribution of the test statistic computed from the sample data is modeled as
(respectively) a t-distribution or a chi-square distribution.  Like all models, the validity of the
predicted distributions depends on assumptions made about the underlying processes that are
being modeled.  In the case of two-sample t-tests for the population mean, the following
assumptions are made:

# The variable being analyzed is a continuous random variable that is normally
distributed in the two target populations.

# The sampling units used to compute the sample means from which the t-statistic
(Equation 4-4) was calculated were independently distributed in their respective
target populations (i.e., there is no temporal or spatial autocorrelation among the
sampling units).  

# There was no systematic error associated with measuring the response on the
sampling units (e.g., spectrophotometers or laboratory assays were correctly
calibrated and applied).

# The null hypothesis is true.  

The distribution of the test statistic under the null hypothesis is the basis for determining
whether the data support the null hypothesis or the alternative.  For example, if we have a sample
of 15 combustors in each phase, the expected distribution of t-statistics under the null hypothesis
is a t-distribution with Degrees of freedom = (15+15-2) = 28.  Ninety-five percent of the t-
statistic values in such a distribution will lie between -2.048 and +2.048.  Suppose we measure
lead emissions for the thirty facilities and compute the t-statistic for lead emissions using
Equation 4-5.  If the absolute value of the t-statistic computed from our sample were 2.5, then we
would conclude that there is less than a 5 percent chance that our sample came from such a t-
distribution.  This suggests that one or more of the above four assumptions is not true.  If we
have previously verified the first three assumptions, we can conclude that our sample does not
support the null hypothesis.  If we have not verified the assumptions, we cannot draw any
conclusions from the t-test.  Rejection of the null hypothesis provides evidence in favor of the
alternative that the Phase I and Phase II lead emission rates are significantly different from one
another.  Due to the assumption required by the t-test that the variables be normally distributed,
the comparisons made in the present study rely on other test statistics, such as the chi-squared
and Wilcoxon tests.

The probability used as the cutoff for accepting or rejecting the null hypothesis is called
the significance level.  By declaring a significance level of 5 percent, we are saying that even
though there is a 5 percent probability that a t-statistic with an absolute value $ 2.048 could have
come from the t-distribution associated with the null-hypothesis, this probability is so small that
we believe it is more reasonable to think that the data actually came from populations with
different mean lead emission rates.  Thus the significance level is just the Type I error rate (")
that the investigator has decided, a priori, that he or she is willing to tolerate.  
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4.2 Estimates of Population Parameters from Sample Data

4.2.1 Overview

Statistical comparisons between Phase I and II data were of two types:  (1) direct
comparisons of selected distributional parameters, and (2) comparisons of correlation
coefficients between selected pairs of Phase I variables with correlation coefficients for the same
variable pairs in the Phase II data.  “Comparison” means implementation of statistical hypothesis
tests for testing equality and/or comparing the overlap of confidence intervals.1  Interval
estimates were computed for distributional parameters of the variables of interest, including the
mean, median (50th percentile), variance, and, as permitted by data limitations, the 10th, 25th, 75th,
and 90th percentiles.  In this section, the sample point and interval estimators of these population
parameters are described.

In this section and in Section 4.3, “X” denotes a variable (e.g., stack height) that is being
compared between a combustor subgroup in Phase I (e.g., incinerators) and a subgroup in
Phase II (e.g., liquid boilers).  The units of analysis were site-level means or totals of these
variables, computed by aggregating over the stacks of a particular subgroup at a given site.  For
example, the mean TEQ emission rate of the liquid boiler subgroup was a computed as the grand
mean of the means (taken over stacks, within each site) of TEQ emissions from each of the sites
at which liquid boilers were operating during the study.  The equations that follow provide
estimates of various parameters (e.g., means, medians, variances) of Phase I and Phase II
combustor subpopulations.  For convenience, the estimated parameters are not subscripted in any
way.  Thus, for example, X(p) will be used to represent the pth population of variable X percentile
in either a Phase I or a Phase II subgroup.  

4.2.2 Interval Estimates of the Mean of a Normal Population

When the values of X are approximately normally distributed in the subgroup population,
the100×1-"% confidence interval for the population mean, :x, is (Snedecor and Cochran, 1980)
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where

0 = the sample grand mean of X in the combustor subgroup 
n = the sample size = the number of sites in the combustor subgroup
i = the index for the ith of n sites in the combustor subgroup.
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where

s2 = the sample estimate of the combustor subgroup variance of X
t1-"/2,n-1 = the (1-"/2)th quantile of the t-statistic associated with n-1 degrees of freedom.

Note:  when n $ 60, the (1-"/2)th quantile of the z-statistic may be substituted for t1-"/2,n-1; e.g., for
a 95 percent confidence interval, use z=1.96.

4.2.3 Point Estimate of the pth Population Percentile (Xp) of X

Assume that we have a random sample of n measurements of the continuous variable X
and that the sample values are ordered from the smallest to the largest and are denoted as xi,
i=1,2,…,n, where i=the rank of the ith ordered value of X.   Let p=i/100 = the proportion of the
sample values with X#xi and define np=j+g, where j is the integer part and g is the fractional part
of the quantity, np.

Then the sample estimate of the pth population percentile of X, X(p), is computed as
follows (SAS, 1990):
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(4-10)

Note:  This estimator is distribution-free; i.e., it is robust to the effects of the actual shape
of the underlying population distribution.  Parametric estimators (e.g., lognormal percentile
estimators; Gilbert, 1987) will be unbiased only if the specified population distribution actually
fits the observed data.  Thus, prior to computing the parametric percentile estimators, goodness-
of-fit tests (e.g., Shapiro-Wilk’s test) should be used to confirm that the sample data could have
come from the specified parametric distribution.  When sample sizes are small (n<20), goodness-
of-fit tests tend to accept the null hypothesis that the data fit the parametric distribution,
regardless of the actual goodness of fit to the parametric model.  Moreover, in cases where the
parametric assumptions hold, the nonparametric estimates of the percentiles have been shown to
be very close to the parametric estimators.  However, when the parametric assumptions fail, the
nonparametric estimators provide truer estimates of the population percentiles.  Because of their
robustness in small sample situations, nonparametric, rather than parametric,  percentile
estimators were employed throughout this report.

4.2.4 Interval Estimate of the pth Population Percentile (Xp) of X

Given a random sample of n measurements of the continuous variable X, if the sample
values are ordered from the smallest to the largest, the upper and lower 100×1-"% confidence
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bounds on the pth population percentile, Xp are the values of X that have ranks r and s,
respectively, where r and s are calculated as follows (Altman et al., 2000):
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(4-11)

(4-12)

where

n = the sample size
p = the percentile proportion (e.g., p=0.90 for the 90th percentile)
round round to the nearest integer.⇒

Note:  this estimator is distribution free; i.e., it is valid for any population distribution.  

4.3 Hypothesis Tests

4.3.1 Overview

This section describes several statistical tests of hypotheses that were used to compare
attributes of the distributions of chemical-specific stack emission variables and variables related
to stack characteristics and ambient weather for stacks from Phase I and Phase II combustors. 
Tests were performed for the equality of the correlations between pairs of selected variables and
for equality of Phase I and II distributional parameters.  The parameters included the mean,
median (50th percentile), variance, and, as permitted by data limitations, the 10th, 25th, 75th, and
90th percentiles.  As described in Section 4.2, “X” denotes a variable that is being compared
between a Phase I subgroup (e.g., incinerators) and a Phase II subgroup (e.g., liquid boilers) and
it is assumed that the parameter estimates are based on m Phase I combustor sites and n Phase II
combustor sites.  The primary hypotheses of interest for each variable X are described along with
the associated tests.  Additional details can be found in the references.

Table 4-1 lists the population parameters that were compared.  “Population” can be
interpreted as the entire set of combustors in some specified combustor subgroup of Phase I (e.g,
incinerators) or Phase II (e.g., liquid boilers), that were operating in the United States during the
period of the study.  “X” denotes a variable (e.g., stack height) that is being compared between
Phase I and II data; the notation X1 and X2 will be used to explicitly reference, respectively,
Phase I and Phase II subgroup measurements and estimates.  More generally, the notation Xi will
be used when referring to aggregate measurements or estimates that can come from either a
Phase I or Phase II subgroup.  This notation is used throughout this section of the report.  As
indicated in the table, all parameters will be estimated separately within each phase.
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Table 4-1.  Population Parameters Compared

Population Parameter and Notation Estimate of Parameter and Notation

Name Phase 1 Phase 2 Name Phase 1 Phase 2
Population Size M N Sample Size m n
Population Mean :1 :2 Sample Mean

1X
2X

Population Standard Deviation F1 F2 Sample Standard
Deviation

s1 s2

Proportion of Population with
X#C, where C = given
constant

P1 P2 Sample Proportion of
Observations with X#C

p1 p2

Correlation of Two Variables D1 D2 Spearman Correlation r1 r2

Population Percentile X1(p) X2(p) Value of the variable X
such that X is  $ p percent
of all other values of X in
the sample 

x1(p) x2(p)

4.3.2 Test for Equal Variances

The hypothesis of equal variances for two populations for a given variable X is formally
stated  as follows:  H0: F1 = F2 vs. HA: F1 … F2 .  A test for equality of the variances of X was
conducted by using an F test.  The statistic 

F = maximum variance/minimum variance = max /min (4-13)( )2 2
1 2,s s ( )2 2

1 2,s s

is compared to the tabulated F distribution.  If a Type I error rate of 0.10 is desired, F is
compared to the 95th percentile of the F distribution with m-1 and n-1 degrees of freedom if s1>s2
and to the 95th percentile of the F distribution with n-1 and m-1 degrees of freedom if s1<s2.  

4.3.3 Test for a Common Median

The hypothesis for comparing population medians is stated as H0: X1(50) = X2(50) vs.
HA: X1(50) … X2(50). 

The generalized Wilcoxon rank sum statistic (Conover, 1999) can be used if the Phase I
and II data are non-normal but have similar variance.  This form of the Wilcoxon test is
generalized in the sense that it allows for tied values of X within phases.  The test statistic is
computed as
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where

R(Xi) = the rank of Xi in the pooled-over-phases sample (ties are replaced with the 
average of the ranks)

m = the Phase I sample size
n = the Phase II sample size
N = n+m.

Note that the summation in the numerator is over only the ranks associated with the
Phase II X values.  This test evaluates whether the distributions of the Phase I and Phase II
values of Xi differ from one another only on the basis of an unspecified shift parameter 2, such
that corresponding quantiles (e.g., the medians) differ from one another by a constant value, 2. 
The null hypothesis evaluated by the Wilcoxon rank sum test is that 2=0, implying that the
distributions of the Phase I and Phase II values of X are approximately identical, and hence that
their medians are also equal.  The alternative hypothesis is that the two distributions are shifted 2
units apart.  This test is valid if (1) the distributions are approximately symmetric, and (2) they
have approximately the same variances.  Thus, if the distributions are actually lognormal and/or
if the variances are unequal, the results of the Wilcoxon test may be incorrect. 

4.3.4 Test for a Common Generalized Percentile

To test whether Phase 1 and 2 share a given population percentile (median or other), the
Phase 1 and Phase 2 data were combined and C, the combined estimated percentile, was
determined.  The test is formulated as a test of the respective proportions, P1 and P2, where Pi is
the proportion of the Phase i population with levels of X less than C: H0: P1 = P2  vs. HA: P1 … P2. 
This test was carried out via a chi-square test, and is appropriate if both phases have reasonably
large sample sizes.  After determining C, the number of observations below and above C for
each phase were determined and the table of counts shown in Table 4-2 was constructed.

Table 4-2.  Counts for Common Percentile Test

Population
No. Observations with

X#C
No. Observations with

X>C Total
Phase 1 m1 m2 m
Phase 2 n1 n2 n
Total n1+m1 n2+m2 n+m

Note that the estimates of P1 and P2 are p1 = m1/m and p2 = n1/n, respectively.  The chi-
square statistic,
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is compared to the percentiles of  a chi-square distribution with 1 degree of freedom.  The output
from the test includes a warning if any of the counts in the table are less than five.  This can
occur (1) if there are extreme differences in the Phase 1 and 2 distributions, or (2) if the sample
size for one or both Phases is small.  In case (1), the chi-square test will likely be statistically
significant.  In case (2), it will generally not be significant Sand the warning should be regarded
as an indication that the test is based on inadequate data.  There is obviously a greater likelihood
of case (2) occurring if more extreme percentiles are chosen.  

4.3.5 Test for Common Correlations Between Two Variates

An approximate test for testing whether the correlations between two variables (denoted
as X and Y) are the same for Phases 1 and 2 (i.e., a test of H0: D1 = D2 vs. HA: D1 … D2) is available
for large sample sizes (m, n>20).  Spearman (rank) correlations, r1 and r2, were first estimated for
each phase.  (Spearman correlations were used since they are not sensitive to outliers and do not
depend on the scale of measurement.)  These estimated correlations for each phase were then
transformed, as follows:

1 2
1 2

1 2

1 10.5ln 0.5ln
1 1

    r rz z
r r

⎡ ⎤ ⎡ ⎤+ +
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

and (4-16, 4-17)

where

D = Spearman’s Corr. Coef.
R(Xj) = the rank of X (or mean rank of tied X values) measured at the jth combustor

site
R(Yj) = the rank of Y (or mean rank of tied Y values) measured at the jth combustor

site
n = the number of of sites in the Phase-i combustor subgroup at which both X and

Y were measured.
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Then the test statistic
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was computed.  For a Type I error rate of approximately 0.10, the absolute value of d would be
compared to the 95th percentile of the standard normal distribution.

4.4 Cumulative Distribution Function (CDF) Plots

A quantile is a statistical quantity that provides a measure of relative standing of a given
observed value with respect to other observations.  If x is the pth quantile for a variable X, then at
least 100p percent of the values in the data set lie at or below x, and at least 100(1-p) percent of
the values lie at or above x.  For example, the 0.95 quantile has the property that 95 percent of
the observations lie at or below x and 5 percent of the data lie at or above x.  A quantile plot for a
variable X is a graphical representation of the data in which the vertical axis represents the
observed values of X and the horizontal axis gives quantitative values from 0.0 to 1.0, with each
point plotted according to the fraction of the points that it exceeds—that is, that point’s
associated quantile.  Assume that X1, X2, ..., Xn represent the n observed values of a given
variable arranged in ascending order.  For each i, compute the fraction,
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Because quantile plots are plots of the cumulative probability of observing a value of X
that is less than or equal to some value, Xi, they are often called cumulative distribution plots (or
CDF plots).  By convention, CDF plots interchange the axes of the quantile plots; i.e., a CDF
plot is a quantile plot that has the cumulative probability on the vertical axis and the
corresponding observed values of X on the horizontal axis.  The CDF plot is a plot of the pairs
(fi, Xi), with straight lines connecting consecutive points.  A CDF plot can be used to read
quantile information such as the median and quartiles.  This can be facilitated by drawing
horizontal lines at the 0.25, 0.50, and 0.75 points on the vertical axis to mark the quartiles and
median values (or any other quantiles of interest) and then noting where these lines intersect the
plotted line that connects the pairs.  In addition, the plot can be used to determine the density of
the data points.  For example, are all the data values close to the center with relatively few values
in the tails or are there a large number of values in one tail with the rest evenly distributed?  The
density of the data is displayed through the slope of the graph.  A large number of data values
has a steep slope, i.e., the graph rises quickly.  A small number of data values has a small slope,
i.e., the graph is relatively flat.  Thus, one can determine whether the data are relatively
uniformly distributed or whether there are large clusters of points.  A CDF plot can also be used
to determine if the data are skewed or symmetric.  A CDF plot of data that are skewed to the
right will appear flatter at the top right than the bottom left, whereas a CDF plot of data that are
skewed to the left will appear to be flatter near the bottom left of the graph and then become
steeper.  If the data are symmetric then the top portion of the graph will stretch to the upper right
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corner in the same way that the bottom portion of the graph stretches to the lower left, creating
an S-shape.  

Several CDF plots summarizing and comparing the distributions of estimated regression
coefficients in various populations of combustor sites are presented in Appendix B.  Pairs of
CDFs that overlay or nearly overlay each other suggest that the underlying population
distributions are very similar and perhaps even identical.  The Wilcoxon rank sum test actually
evaluates the null hypothesis that the distance between a pair of CDFs is zero.  When this is true,
the CDFs will overlay each other and corresponding percentiles and the means of the two
populations are not significantly different from one another.   

4.5 Interpretation and Limitations Due to Sample Size

4.5.1 Overview

The principal objective of the statistical analyses was to obtain evidence in support of the
hypothesis that associations between measured risk estimates, emissions of various kinds,
combustor characteristics, and meteorological variables that were actually calculated from the
data obtained from the original Phase I combustors were predictive of the corresponding
associations and risks in the Phase II combustors or in the new Phase I combustors for which no
actual risk estimates were available.  As part of the weight-of-evidence approach to this problem,
statistical hypothesis tests were carried out and confidence interval estimates were computed
from the data.  In general, two types of tests were run.  So-called two-sample tests (i.e., F-tests, t-
tests, z-tests, and Wilcoxon rank sum tests) evaluated the null hypothesis that some parameter
(e.g., the population mean TEQ emission rate) measured in the Phase I population was not
significantly different from the corresponding parameter in the Phase II or New Phase I
population.  The alternative hypothesis was always two-sided—that is, that the corresponding
parameters were different (as opposed to larger or smaller).  The second type of test was the
Shapiro-Wilk’s test of normality (or lognormality) wherein the null hypothesis was that the data
were (log)normally distributed vs. the alternative that the data were not (log)normally
distributed.  These tests were used to determine the appropriateness of a log-transformation and
to examine the reasonableness of the normality assumption underlying several of the two-sample
statistical tests.  In this section, a number of limitations and caveats regarding the interpretation
of these tests and the confidence interval estimates will be discussed.

4.5.2 Sample Size Issues

Table 4-3 summarizes the various statistical tests and confidence interval estimates that
were used to compare the population parameter estimates for the two groups of combustors. 
Two numbers are entered into the body of the table for every statistical test that was used to test
the null hypothesis of equal group parameters (except the chi-square test).  The first number is
the minimum combined sample size of the two groups that is  recommended for the validity of
the associated statistical test.  The second number is the recommended minimum sample size of
the smaller of the two groups.  For the chi-squared test (Section 4.3.4), the minimum number of
combustor sites in each cell determines the validity of the test.  The recommended sample size
for the Shapiro-Wilk’s test (not entered in Table 4-3) is 11 combustors per group; it is not
recommended that one should attempt inferences on the form of the population distribution (e.g.,
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the distribution of TEQ emissions from solid boilers) from samples of less than 11 combustor
sites.

All of the confidence interval formulae in Section 4.2 are functions of the standard
normal deviate (i.e., z) and as such, are usually referred to as normal approximations.  Although
most statistical texts recommend sample sizes of at least 30 for normal approximations, that
recommendation is relaxed here to a minimum of 20.  

In general, larger sample sizes produce more valid and reliable estimates and statistical
tests  because

# On average, larger samples tend to be more representative of the population
variability than are smaller samples

# The statistical power of the test (i.e., the likelihood of rejecting the null
hypothesis) tends to be unacceptably low for small samples (e.g., n<20).

The issue of representativeness is most easily understood by considering the estimate of
the population variance.  The variance is the average squared deviation of the population
members from the population mean.  The best estimate of the variance should therefore be based
on a sample(s) that includes some of the most extreme values (i.e., tail values) of the population
distribution.  The larger the sample, the more likely it is to include such relatively uncommon
values; conversely the smaller the sample, the less likely it is to include extreme values.  Thus, if
small samples (e.g., n=8) are repeatedly drawn from a parent population that has a large
variance, the majority of the samples are likely to seriously underestimate the population
variance, while an occasional sample will grossly overestimate it.  This situation is illustrated by
the shot pattern shown in panel B of Figure 4-1; very few of the estimates are in the bull’s-eye
area.  Hence, any statistical tests (e.g., the F-test for equal variances) based on small sample
estimates of the variance have a high probability of giving incorrect results.  This problem
applies to all of the population parameter estimates in Table 4-1.
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Table 4-3.  Recommended Minimum Samples Sizes for Two-Sample Test
Statistics and One-Sample Confidence Interval Estimators

Estimated
Population
Parameter F-test T-test

WRS
Test Z-test

ChiSq
Test

Normal
Approx.

C.I.a

Mean 30,10b 20,10b 20/group
Variance 30,10b 20/group
Spearman
Rho

30,10b

Percentile
10th 5/cellc 20/group
25th 5/cellc 20/group
50th 5/cellc 20/group
75th 5/cellc 20/group
95th 5/cellc 20/group

a Table entries are the minimum sample sizes for each group (e.g., Phase 1 and Phase 2)
b Table entries are minimum combined Phase I and II group sample size, minimum required

sample size for the  smaller of the Phase I and II groups
c Minimum sample size per cell of 2×2 table (Section 4.3.4) 

As discussed in Section 4.1.1, a Type II error occurs when the null hypothesis is
erroneously accepted.  In the case of the two-sample tests summarized in Table 4-2, this amounts
to erroneously deciding that (for example) the Phase I and Phase II population parameters are not
significantly different.  Clearly, the consequences of this type of error in a given study may be as
serious as, or more serious, than a Type I error.  Hence, extreme caution is recommended in
interpreting any nonsignificant (e.g., p>0.05) results in which either the combined or the
individual group minimum sample size requirements (Table 4-1) are not met.  

Type II error rates are usually expressed in terms of statistical power, where

Power  = 1-Prob(Type II error). (4-22)

That is, power is the complement of the Type II error rate.  In terms of the judicial
analogy used earlier, power is the probability of correctly convicting a guilty person.  Thus we
desire that our statistical tests have high power so as giving us high confidence that we have
correctly identified all of the pairs of Phase I and II combustor subgroups whose population
parameters are different from one another.  How one defines “high” is subjective.  However, if
we consider that a coin-flip decision of guilt or innocence has a power of 0.50, it is obvious that
we desire the power of a test to be greater than 0.50.  In many experimental studies, the
minimum acceptable power is set at 0.80.  However, in a study such as this one, where
potentially hazardous outcomes are being considered, a higher standard may be required.  

The power of a two-sample test is a function of four factors:  (1) the variance of the two
samples, (2) the two sample sizes, (3) the prespecified "-level (i.e., the maximum allowable
Type I error rate), and (4) the minimally important difference between the two populations. 
Defining the minimally important difference is problematic for the mean and the variance;
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however, because both proportions and correlation coefficients are constrained to take on values
(respectively) from 0 to 1 and from -1 to +1, one can easily compute power estimates in (say)
increments of 0.10 over the entire range of the expected parameter values.  This has been done in
Tables C-1 and C-2 of Appendix C.  The tables provide power estimates for different
combinations of sample size and minimally important differences, at several different "-levels. 

The minimally important differences in Table C-1 are labeled “relative differences in
percentiles.”  These values are actually the difference in the proportion of the measured group
(Phase I) whose response values (e.g., TEQ emission rate) are below the pooled population Pth

percentile (e.g., the 25th percentile) and the corresponding proportion in the group for which no
risk was measured (Phase II or New Phase I combustors).  Clearly the larger this difference is,
the more likely it is that the null hypothesis of equal percentiles is wrong.  The minimally
important difference in correlation coefficients is labeled “DELTA” in Table C-2.  In both Table
C-1 and C-2, the desirable combinations of sample size, "-level, and minimal differences will be
associated with powers > 0.80.  Similarly, for a given pair of sample sizes, power and "-level,
one can find the smallest observed difference that the statistical test will “recognize” as being
statistically significant.  For example, for a test of the equality of a Phase I correlation coefficient
computed from a sample of 25 combustor sites vs. a correlation coefficient computed from a
sample of 8 Phase II sites, such that the power is = 0.80, the two correlation coefficients will
have to differ by more than 0.60.  Thus for this combination, only very large differences will be
“detectable.”  If differences in correlation as small as ± 0.25 are deemed to be potentially
biologically important, then clearly estimates from sample sizes of 8 or less will be an
inadequate basis for decisions.

4.5.3 Percentile Estimates

Percentile estimation poses special problems in small samples and populations.  Literally,
a percentile tells one what percentage of a population is less than a particular value.  Because
percentages are measured in increments of 1/100, it is difficult to obtain meaningful estimates of
them from very small samples or for very small finite populations.  For example, if we have a
sample of 5 values of X = 7, 9, 12, 15, 29 and we try to estimate percentiles in the upper tail of
the population distribution, we will find that all of the percentiles from 81 to 100 have the value
29, the sample maximum.  That is, we cannot distinguish the 81st from the 99th percentile in this
sample.  Moreover, if a population is very small (e.g., N=5), it is hard to justify any attempts to
partition it into in hundredths; for such small populations, percentiles are not useful or
meaningful descriptive statistics.  

Because of this problem and the sample size limitation of 5 combustor sites per cell of
the 2×2 table for the P2 test for equal percentiles (Section 4.3.4), a system of contingencies has
been developed for the comparison of percentile estimates from small samples (see Section 5,
Table 5-7).  The rationale for the system is that (1) tail percentiles are more difficult to estimate
accurately from small samples, and (2) in small sample situations, comparison of confidence
estimates for overlap is both more informative and more robust than hypothesis testing.  For
example, in comparing the 95 percent confidence interval estimates of two sample estimates of
the 75th percentile, we might see values like this:
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75th percentile of X in Phase I =   17 (1, 94)
75th percentile of X in Phase II =   77 (20, 194).

The point estimates suggest that the difference between the two 75th percentile estimates
is actually quite large (i.e., 60 units) but because the confidence intervals are badly inflated due
to the small sample sizes, they overlap considerably and, in effect, we are unable to detect a
significant difference.  Thus, inflated confidence intervals are the counterpart to low statistical
power in statistical hypothesis tests that occurs when sample sizes are small; like those tests,
comparison of such confidence intervals will often lead to Type II decision errors.  Thus, pairs of
confidence interval estimates, like the two above, provide a flag or warning of the apparent high
risk of a Type II decision error; a warning that is particularly appropriate when the sample sizes
are below those shown in Table 4-3.




